Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559086

RESUMEN

Turning on cue or stopping at a red light requires the detection of such cues to select action sequences, or suppress action, in accordance with cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Here, we used glutamate-sensing microelectrode arrays to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns, and initiated such turns more slowly, than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In conjunction with turn cue-evoked glutamate spike levels, the presence of a single spike rendered GTs to be almost twice as likely to turn than STs. In contrast, multiple glutamate spikes predicted STs to be robustly more likely to turn than GTs. In GTs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate peaks and increased the number of spikes. These findings suggest that turn cue-evoked glutamate release dynamics in GTs are tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals is regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking.

2.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36810148

RESUMEN

Sign-tracking (ST) describes the propensity to approach and contact a Pavlovian reward cue. By contrast, goal-trackers (GTs) respond to such a cue by retrieving the reward. These behaviors index the presence of opponent cognitive-motivational traits, with STs exhibiting attentional control deficits, behavior dominated by incentive motivational processes, and vulnerability for addictive drug taking. Attentional control deficits in STs were previously attributed to attenuated cholinergic signaling, resulting from deficient translocation of intracellular choline transporters (CHTs) into synaptosomal plasma membrane. Here, we investigated a posttranslational modification of CHTs, poly-ubiquitination, and tested the hypothesis that elevated cytokine signaling in STs contributes to CHT modification. We demonstrated that intracellular CHTs, but not plasma membrane CHTs, are highly ubiquitinated in male and female sign-tracking rats when compared with GTs. Moreover, levels of cytokines measured in cortex and striatum, but not spleen, were higher in STs than in GTs. Activation of the innate immune system by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) elevated ubiquitinated CHT levels in cortex and striatum of GTs only, suggesting ceiling effects in STs. In spleen, LPS increased levels of most cytokines in both phenotypes. In cortex, LPS particularly robustly increased levels of the chemokines CCL2 and CXCL10. Phenotype-specific increases were restricted to GTs, again suggesting ceiling effects in STs. These results indicate that interactions between elevated brain immune modulator signaling and CHT regulation are essential components of the neuronal underpinnings of the addiction vulnerability trait indexed by sign-tracking.


Asunto(s)
Señales (Psicología) , Lipopolisacáridos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Lipopolisacáridos/farmacología , Motivación , Colinérgicos/farmacología , Fenotipo , Recompensa
3.
Prog Brain Res ; 269(1): 345-371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35248201

RESUMEN

Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.


Asunto(s)
Enfermedad de Parkinson , Colinérgicos , Neuronas Colinérgicas , Cognición , Cuerpo Estriado , Humanos , Enfermedad de Parkinson/complicaciones
4.
J Neurosci ; 42(16): 3426-3444, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35232764

RESUMEN

Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.


Asunto(s)
Acetilcolina , Simportadores , Animales , Colina , Colinérgicos , Neuronas Colinérgicas , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones
5.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36635246

RESUMEN

Sign tracking versus goal tracking in rats indicate vulnerability and resistance, respectively, to Pavlovian cue-evoked addictive drug taking and relapse. Here, we tested hypotheses predicting that the opponent cognitive-behavioral styles indexed by sign tracking versus goal tracking include variations in attentional performance which differentially depend on basal forebrain projection systems. Pavlovian Conditioned Approach (PCA) testing was used to identify male and female sign-trackers (STs) and goal-trackers (GTs), as well as rats with an intermediate phenotype (INTs). Upon reaching asymptotic performance in an operant task requiring the detection of visual signals (hits) as well as the reporting of signal absence for 40 min per session, GTs scored more hits than STs, and hit rates across all phenotypes correlated with PCA scores. STs missed relatively more signals than GTs specifically during the last 15 min of a session. Chemogenetic inhibition of the basal forebrain decreased hit rates in GTs but was without effect in STs. Moreover, the decrease in hits in GTs manifested solely during the last 15 min of a session. Transfection efficacy in the horizontal limb of the diagonal band (HDB), but not substantia innominate (SI) or nucleus basalis of Meynert (nbM), predicted the behavioral efficacy of chemogenetic inhibition in GTs. Furthermore, the total subregional transfection space, not transfection of just cholinergic neurons, correlated with performance effects. These results indicate that the cognitive-behavioral phenotype indexed by goal tracking, but not sign tracking, depends on activation of the basal forebrain-frontal cortical projection system and associated biases toward top-down or model-based performance.


Asunto(s)
Prosencéfalo Basal , Objetivos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Señales (Psicología) , Prosencéfalo Basal/fisiología , Motivación
7.
PLoS Comput Biol ; 17(7): e1009235, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329297

RESUMEN

Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.


Asunto(s)
Neuronas Colinérgicas/fisiología , Ritmo Gamma/fisiología , Modelos Neurológicos , Ritmo Teta/fisiología , Acetilcolina/farmacología , Acetilcolina/fisiología , Animales , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Biología Computacional , Simulación por Computador , Ritmo Gamma/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Redes Neurales de la Computación , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiología , Receptores Colinérgicos/efectos de los fármacos , Receptores Colinérgicos/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ritmo Teta/efectos de los fármacos
8.
Ann Neurol ; 90(1): 130-142, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33977560

RESUMEN

OBJECTIVE: Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4ß2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4ß2* nAChR partial agonist varenicline. METHODS: Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4ß2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS: Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION: Varenicline occupied α4ß2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4ß2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.


Asunto(s)
Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Marcha/efectos de los fármacos , Agonistas Nicotínicos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Equilibrio Postural/efectos de los fármacos , Vareniclina/uso terapéutico , Anciano , Encéfalo/diagnóstico por imagen , Estudios Cruzados , Femenino , Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Agonistas Nicotínicos/farmacología , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía de Emisión de Positrones , Vareniclina/farmacología
9.
Psychopharmacology (Berl) ; 238(7): 1953-1964, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33735392

RESUMEN

RATIONALE: In addition to the disease-defining motor symptoms, patients with Parkinson's disease (PD) exhibit gait dysfunction, postural instability, and a propensity for falls. These dopamine (DA) replacement-resistant symptoms in part have been attributed to loss of basal forebrain (BF) cholinergic neurons and, in interaction with striatal dopamine (DA) loss, to the resulting disruption of the attentional control of balance and complex movements. Rats with dual cholinergic-DA losses ("DL rats") were previously demonstrated to model PD falls and associated impairments of gait and balance. OBJECTIVES: We previously found that the muscarinic M1-positive allosteric modulator (PAM) TAK-071 improved the attentional performance of rats with BF cholinergic losses. Here, we tested the hypotheses that TAK-071 reduces fall rates in DL rats. RESULTS: Prior to DL surgery, female rats were trained to traverse a rotating straight rod as well as a rod with two zigzag segments. DL rats were refamiliarized with such traversals post-surgery and tested over 7 days on increasingly demanding testing conditions. TAK-071 (0.1, 0.3 mg/kg, p.o.) was administered prior to daily test sessions over this 7-day period. As before, DL rats fell more frequently than sham-operated control rats. Treatment of DL rats with TAK-071 reduced falls from the rotating rod and the rotating zigzag rod, specifically when the angled part of the zigzag segment, upon entering, was at a steep, near vertical angle. CONCLUSIONS: TAK-071 may benefit complex movement control, specifically in situations which disrupt the patterning of forward movement and require the interplay between cognitive and motor functions to modify movement based on information about the state of dynamic surfaces, balance, and gait.


Asunto(s)
Accidentes por Caídas/prevención & control , Agonistas Muscarínicos/uso terapéutico , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Receptor Muscarínico M1/agonistas , Administración Oral , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Femenino , Agonistas Muscarínicos/farmacología , Trastornos Parkinsonianos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1/metabolismo
10.
Mov Disord ; 36(3): 535-546, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615556

RESUMEN

BACKGROUND: In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS: Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT: Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION: Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Cuerpo Estriado , Enfermedad de Parkinson , Anciano , Anciano de 80 o más Años , Neuronas Colinérgicas , Dopamina , Humanos , Neostriado
11.
J Neurosci ; 40(31): 6049-6067, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32554512

RESUMEN

Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.


Asunto(s)
Interneuronas , Neostriado/fisiopatología , Sistema Nervioso Parasimpático/fisiopatología , Trastornos Parkinsonianos/fisiopatología , Accidentes por Caídas , Animales , Antipsicóticos/farmacología , Clozapina/farmacología , Señales (Psicología) , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos/farmacología , Femenino , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/fisiopatología , Interneuronas/efectos de los fármacos , Masculino , Variaciones Dependientes del Observador , Sistema Nervioso Parasimpático/efectos de los fármacos , Ratas
12.
Eur J Neurosci ; 52(6): 3545-3560, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32293081

RESUMEN

Recent experimental results have shown that the detection of cues in behavioral attention tasks relies on transient increases of acetylcholine (ACh) release in frontal cortex and cholinergically driven oscillatory activity in the gamma frequency band (Howe et al. Journal of Neuroscience, 2017, 37, 3215). The cue-induced gamma rhythmic activity requires stimulation of M1 muscarinic receptors. Using biophysical computational modeling, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh-induced effects on the M current conductance, gKs , change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal-Interneuronal Network Gamma mechanism. Depending on connectivity strengths between and among E and I cells, gamma activity decays with the simulated gKs transient modulation or is sustained in the network after the gKs transient has completely dissipated. We investigated the sensitivity of the emergent gamma activity to synaptic strengths, external noise and simulated levels of gKs modulation. To address recent experimental findings that cholinergic signaling is likely spatially focused and dynamic, we show that localized gKs modulation can induce transient changes of cellular excitability in local subnetworks, subsequently causing population-specific gamma oscillations. These results highlight dynamical mechanisms underlying localization of ACh-driven responses and suggest that spatially localized, cholinergically induced gamma may contribute to selectivity in the processing of competing external stimuli, as occurs in attentional tasks.


Asunto(s)
Colinérgicos , Ritmo Gamma , Acetilcolina , Neuronas , Receptor Muscarínico M1
13.
J Neurosci ; 40(4): 712-719, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969489

RESUMEN

Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.


Asunto(s)
Neuronas Colinérgicas/fisiología , Prosencéfalo/fisiología , Receptores Muscarínicos/fisiología , Receptores Nicotínicos/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Transducción de Señal/fisiología
14.
Behav Neurosci ; 134(2): 133-143, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31916796

RESUMEN

The identification of broadly defined psychological traits that bestow vulnerability for the manifestation of addiction-like behaviors can guide the discovery of the neuronal mechanisms underlying the propensity for drug taking. Sign-tracking behavior in rats (STs) signifies the presence of a trait that predicts a relatively greater behavioral control of Pavlovian drug and reward cues than in rats that exhibit goal-tracking behavior (GTs). We previously demonstrated that relatively poor cholinergic-attentional control in STs is an essential component of the trait indexed by sign-tracking and that this trait aspect contributes to the relatively greater power of drug cues to control the behavior of STs. Here we addressed the possibility that STs and GTs employ fundamentally different psychological mechanisms for the detection of cues in attention-demanding contexts. Rats were trained to perform an operant Sustained Attention Task. As task training advanced to the stage that taxed attentional control, the relative brightness of visual target signals significantly influenced detection performance in STs but not GTs. This finding suggests that STs, but not GTs, rely on bottom-up, cue salience-driven mechanisms to detect cues. GTs may be able to resist behavioral control by Pavlovian drug cues by utilizing goal-directed decisional processes that minimize the influence of the salience of drug cues. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Conducta Adictiva/psicología , Señales (Psicología) , Objetivos , Percepción Visual , Animales , Atención , Conducta Animal , Conducta de Elección , Condicionamiento Operante , Femenino , Masculino , Estimulación Luminosa , Ratas Sprague-Dawley
15.
Psychopharmacology (Berl) ; 237(1): 289, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31650233

RESUMEN

After publication of this paper, the authors determined that the "Acknowledgments" section was omitted. Below is the "Acknowledgments" statement.

16.
Psychopharmacology (Berl) ; 237(1): 137-153, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31620809

RESUMEN

RATIONALE: Loss of basal forebrain cholinergic neurons contributes to the severity of the cognitive decline in age-related dementia and, in patients with Parkinson's disease (PD), to impairments in gait and balance and the resulting risks for falls. Contrasting with the extensive evidence indicating an essential role of cholinergic activity in mediating cognitive, specifically attentional abilities, treatment with conventional acetylcholinesterase inhibitors (AChEIs) has not fulfilled the promise of efficacy of pro-cholinergic treatments. OBJECTIVES: Here, we investigated the potential usefulness of a muscarinic M1 positive allosteric modulator (PAM) in an animal model of cholinergic loss-induced impairments in attentional performance. Given evidence indicating that fast, transient cholinergic signaling mediates the detection of cues in attentional contexts, we hypothesized that a M1 PAM amplifies such transient signaling and thereby rescues attentional performance. RESULTS: Rats performed an operant sustained attention task (SAT), including in the presence of a distractor (dSAT) and during a post-distractor (post-dSAT) period. The post-dSAT period served to assess the capacity for recovering performance following a disruptive event. Basal forebrain infusions of the cholino-specific immunotoxin 192 IgG-saporin impaired SAT performance, and greater cholinergic losses predicted lower post-dSAT performance. Administration of TAK-071 (0.1, 0.3 mg/kg, p.o., administered over 6-day blocks) improved the performance of all rats during the post-dSAT period (main effect of dose). Drug-induced improvement of post-dSAT performance was relatively greater in lesioned rats, irrespective of sex, but also manifested in female control rats. TAK-071 primarily improved perceptual sensitivity (d') in lesioned rats and facilitated the adoption of a more liberal response bias (B˝D) in all female rats. CONCLUSIONS: These findings suggest that TAK-071 may benefit the attentional performance of patients with partial cholinergic losses and specifically in situations that tax top-down, or goal-driven, attentional control.


Asunto(s)
Atención/efectos de los fármacos , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Receptores Muscarínicos/metabolismo , Animales , Señales (Psicología) , Masculino , Ratas , Análisis y Desempeño de Tareas
17.
Elife ; 82019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31502538

RESUMEN

Cues in the environment can elicit complex emotional states, and thereby maladaptive behavior, as a function of their ascribed value. Here we capture individual variation in the propensity to attribute motivational value to reward-cues using the sign-tracker/goal-tracker animal model. Goal-trackers attribute predictive value to reward-cues, and sign-trackers attribute both predictive and incentive value. Using chemogenetics and microdialysis, we show that, in sign-trackers, stimulation of the neuronal pathway from the prelimbic cortex (PrL) to the paraventricular nucleus of the thalamus (PVT) decreases the incentive value of a reward-cue. In contrast, in goal-trackers, inhibition of the PrL-PVT pathway increases both the incentive value and dopamine levels in the nucleus accumbens shell. The PrL-PVT pathway, therefore, exerts top-down control over the dopamine-dependent process of incentive salience attribution. These results highlight PrL-PVT pathway as a potential target for treating psychopathologies associated with the attribution of excessive incentive value to reward-cues, including addiction.


Asunto(s)
Conducta Animal , Señales (Psicología) , Sistema Límbico/fisiología , Vías Nerviosas/fisiología , Animales , Motivación , Ratas , Recompensa
18.
Behav Neurosci ; 133(4): 448-459, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30896190

RESUMEN

Previous research emphasized the impact of traumatic brain injury on cholinergic systems and associated cognitive functions. Here we addressed the converse question: Because of the available evidence indicating cognitive and neuronal vulnerabilities in humans expressing low-capacity cholinergic systems or with declining cholinergic systems, do injuries cause more severe cognitive decline in such subjects, and what cholinergic mechanisms contribute to such vulnerability? Using mice heterozygous for the choline transporter (CHT+/- mice) as a model for a limited cholinergic capacity, we investigated the cognitive and neuronal consequences of repeated, mild concussion injuries (rmCc). After five rmCc, and compared with wild type (WT) mice, CHT+/- mice exhibited severe and lasting impairments in sustained attention performance, consistent with effects of cholinergic losses on attention. However, rmCc did not affect the integrity of neuronal cell bodies and did not alter the density of cortical synapses. As a cellular mechanism potentially responsible for the attentional impairment in CHT+/- mice, we found that rmCc nearly completely attenuated performance-associated, CHT-mediated choline transport. These results predict that subjects with an already vulnerable cholinergic system will experience severe and lasting cognitive-cholinergic effects after even relatively mild injuries. If confirmed in humans, such subjects may be excluded from, or receive special protection against, activities involving injury risk. Moreover, the treatment and long-term outcome of traumatic brain injuries may benefit from determining the status of cholinergic systems and associated cognitive functions. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Conmoción Encefálica/fisiopatología , Disfunción Cognitiva/fisiopatología , Proteínas de Transporte de Membrana/metabolismo , Acetilcolina/metabolismo , Animales , Atención/fisiología , Colinérgicos , Neuronas Colinérgicas/fisiología , Cognición/fisiología , Femenino , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica/fisiología
19.
Curr Opin Psychol ; 29: 102-107, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30711909

RESUMEN

Cholinergic signaling in the cortex involves fast or transient signaling as well as a relatively slower neuromodulatory component. These two components of cholinergic activity mediate separate yet interacting aspects of cue detection and attentional control. The transient component appears to support the activation of cue-associated task or response sets, whereas the slower modulatory component stabilizes task-set and context representations, therefore potentially facilitating top-down control. Evidence from humans expressing genetic variants of the choline transporter as well as from patients with degenerating cholinergic systems supports the hypothesis that attentional control capacities depend on levels of cholinergic neuromodulation. Deficits in cholinergic-attentional control impact diverse cognitive functions, including timing, working memory, and complex movement control.


Asunto(s)
Acetilcolina/fisiología , Atención/fisiología , Corteza Cerebral/fisiología , Señales (Psicología) , Animales , Encéfalo , Cognición/fisiología , Humanos , Ratones , Ratas
20.
Behav Neurosci ; 133(1): 121-134, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30688488

RESUMEN

Sign- and goal-tracking behavior signifies the influence of opposed cognitive-motivational styles, with the former being characterized by a tendency for approaching and contacting reward cues, including a readiness for attending, bottom-up, to salient cues, and a relatively greater vulnerability for developing and maintaining addiction-like behaviors. We previously demonstrated that these styles also impact the cognitive-motor interactions that are taxed during traversal of dynamic surfaces, with goal-trackers (GTs) making less movement errors and falling less frequently than sign-trackers (STs). The present experiment tested the hypothesis that complex movement control in GTs, but not STs, depends on activation of the basal forebrain projection system to telencephalic regions. Chemogenetic inhibition of the basal forebrain increased movement errors and falls in GTs during traversal of a rotating zigzag rod but had no significant effect on the relatively lower performance of STs. Neurochemical evidence confirmed the efficacy of the inhibitory designer receptor exclusively activated by designer drug (DREADD). Administration of clozapine-N-oxide (CNO) had no significant effect in GTs not expressing the DREADD. These results indicate that GTs, but not STs, activate the basal forebrain projection system to mediate their relatively superior ability for complex movement control. STs may also serve as an animal model in research on the role of basal forebrain systems in aging- and Parkinson's disease-associated falls. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Prosencéfalo Basal/fisiología , Objetivos , Movimiento , Desempeño Psicomotor , Animales , Atención/fisiología , Femenino , Masculino , Actividad Motora , Ratas Sprague-Dawley , Ratas Transgénicas , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...